网上有关“三角函数诱导公式”话题很是火热,小编也是针对三角函数诱导公式寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
常用的三角函数诱导公式有以下几组:
公式1 :
设a为任意角,终边相同的角的同- -三角函数的值相等:
sin ( 2kπ+a) = sina
cos ( 2kπ+a) =Cosa
tan ( 2kπ+a) = tana
cot ( 2kπ+a) = cota
公式二:
设a为任意角, π+a的三角函数值与x的三角函数值之间的关系:
sin(π+a) = - sina
cos( π+a) = - COSa
tan( π+a) = tana
cot(π+a) = cota
万能公式:
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]?}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]?}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
利用诱导公式化简求值时的原则:1、“负化正”,运用-α的诱导公式将任意负角的三角函数化为任意正角的三角函数。2、“大化小”,利用k·360°+α(k∈Z)的诱导公式将大于360°的角的三角函数化为0°到360°的三角函数。3、“小化锐”,将大于90°的角化为0°到90°的角的三角函数。4、“锐求值”,得到0°到90°的三角函数后,若是特殊角直接求得,若是非特殊角可由计算器求得。
关于“三角函数诱导公式”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
评论列表(3条)
我是中擎号的签约作者“映莲”
本文概览:网上有关“三角函数诱导公式”话题很是火热,小编也是针对三角函数诱导公式寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。三角函数是基本初等...
文章不错《三角函数诱导公式》内容很有帮助